pacman::p_load(sf, tmap, tidyverse)In-class_Ex03
##Importing Data
NGA_wp <- read_rds("data/rds/NGA_wp.rds")p1 <- tm_shape(NGA_wp) +
tm_fill("wp_functional",
n=10,
style="equal",
palette = "Blues") +
tm_borders(lwd=0.1,
alpha = 1) +
tm_layout(main.title = "Distribution of funtional water points",
legend.outside = FALSE)
p1
#tmap_arrange(p2, p1, nrow=1)NGA_wp <- NGA_wp %>%
mutate(pct_functional = wp_functional/total_wp) %>%
mutate(pct_nonfunctional = wp_nonfunctional/total_wp)tm_shape(NGA_wp) +
tm_fill("wp_functional",
n=10,
style="equal",
palette = "Blues",
legend.hist = TRUE) +
tm_borders(lwd=0.1,
alpha = 1) +
tm_layout(main.title = "Rate map of functional water point",
legend.outside = TRUE)
#Percentile Map #step 1; exclude records with NA
NGA_wp <- NGA_wp %>%
drop_na()#step 2 creating customised classification and extracting values
percent <- c(0, .01, .1, .5, .9, .99, 1)
var <- NGA_wp["pct_functional"] %>%
st_set_geometry(NULL)
quantile(var[,1], percent) 0% 1% 10% 50% 90% 99% 100%
0.0000000 0.0000000 0.2169811 0.4791667 0.8611111 1.0000000 1.0000000
get.var <- function(vname, df){
v <- df[vname] %>%
st_set_geometry(NULL)
v <- unname(v[,1])
return(v)
}percentmap <- function(vname, df, legtitle=NA, mtitle="Percentile Map"){
percent <- c(0, .01, .1, .5, .9, .99, 1)
var <- get.var(vname, df)
bperc <- quantile(var, percent)
tm_shape(df) +
tm_polygons() +
tm_shape(df) +
tm_fill(
vname,
title = legtitle,
breaks = bperc,
palette = "Blues",
labels = c("< 1%", "1% - 10%", "10% - 50%", "50% - 90%", "90% - 99%", "99% - 100%")
) +
tm_borders()+
tm_layout(main.title = mtitle,
title.position = c("right", "bottom"))
}percentmap("pct_functional", NGA_wp)